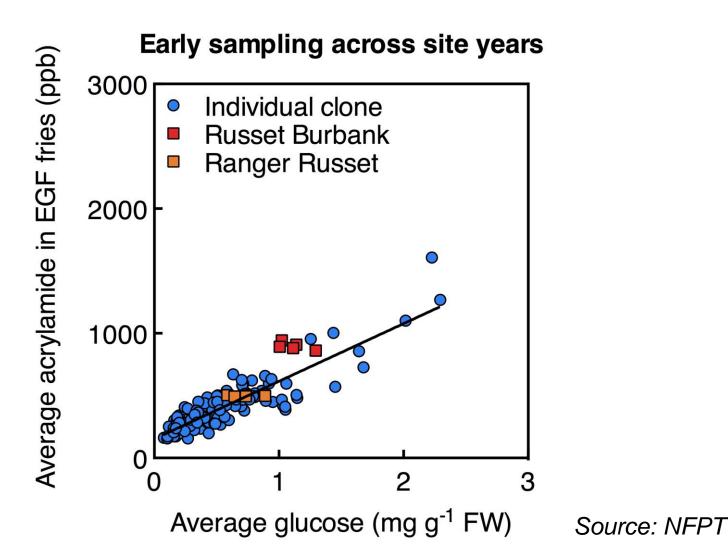
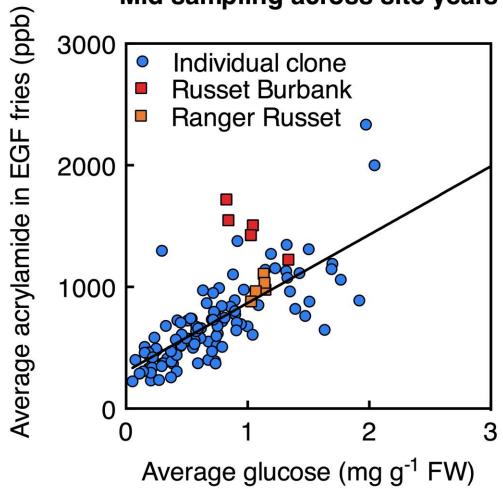
SCRI Update NFPT Meeting in Caldwell, 2013

Paul Bethke, Yi Wang, A.J. Bussan
Department of Horticulture, UWMadison

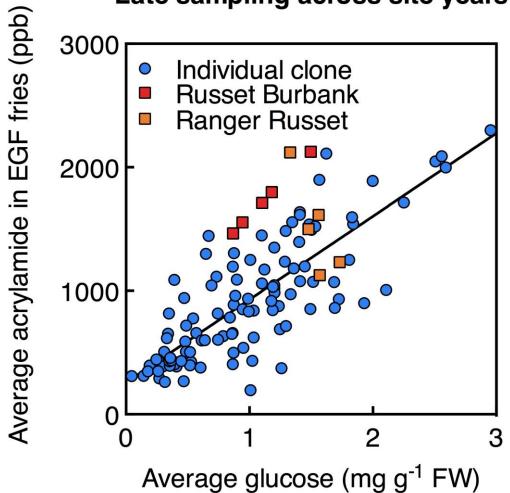

Today's Objectives

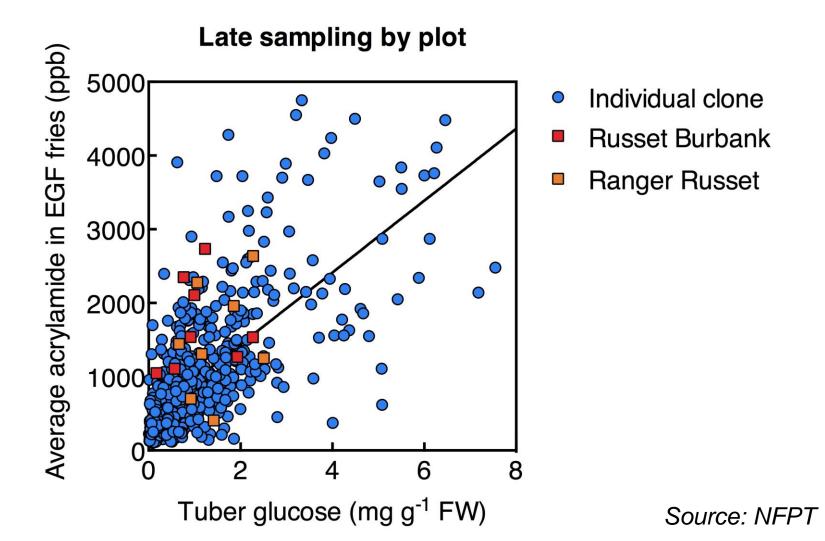
- Correlation between glucose and acrylamide levels
- Consumer attribute testing
- Maximum likelihood testing
- Seed production

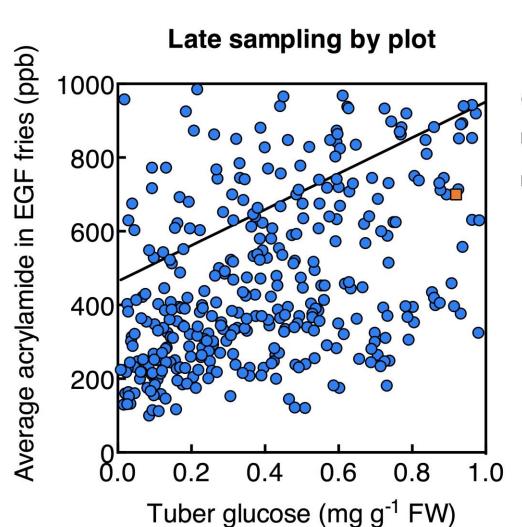

Agronomic trials

Correlation between Glucose and Acrylamide

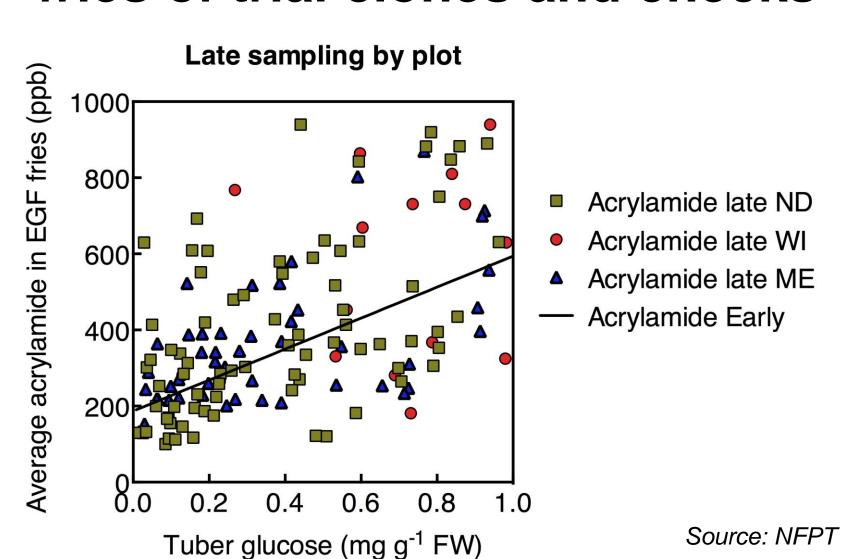
- Correlations weaker as storage season progresses
- Substantial variability despite strong relationships at glucose < 1.0 mg g⁻¹
- Relationship and variability consistent across locations
- Consider limiting acrylamide analysis to targeted glucose levels (i.e. < 0.5 mg g⁻¹)

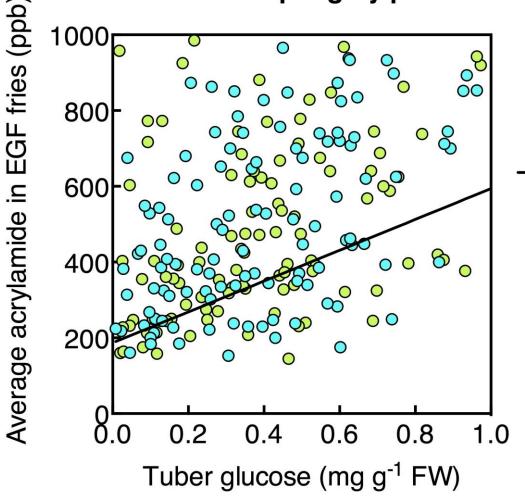





Source: NFPT

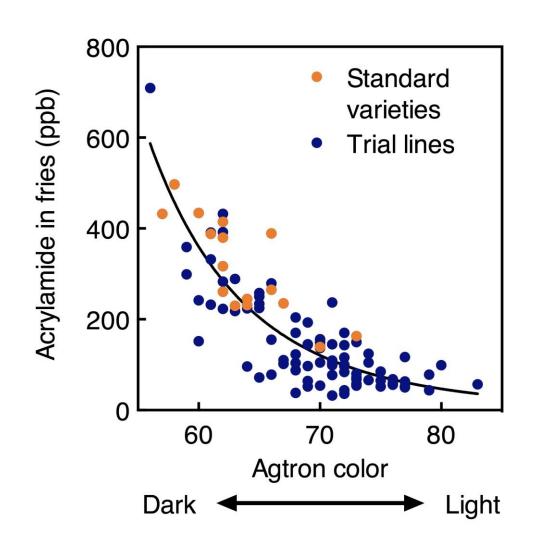
Source: NFPT




- Individual clone
- Russet Burbank
- Ranger Russet

321 plots outside range of graph

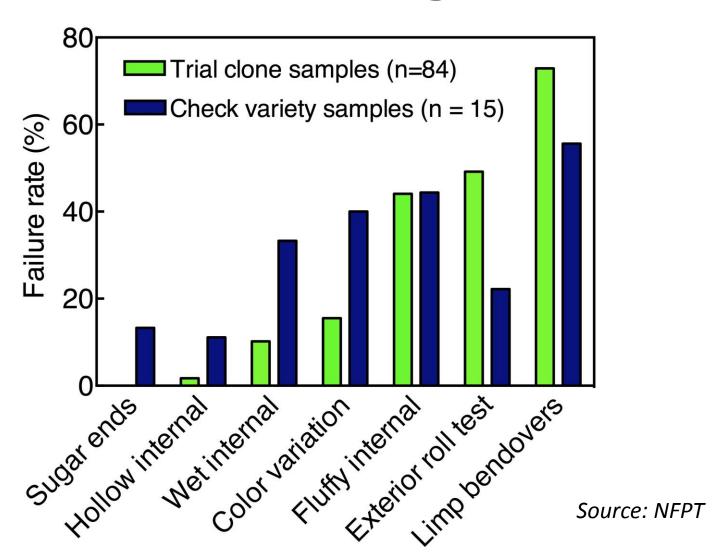
Source: NFPT



- Acrylamide late ID
- Acrylamide late WA
- Acrylamide Early

Source: NFPT

Many clones have excellent fry color and low acrylamide-forming potential



Fry color was good but other attributes were poor

Process Rank	#	Variety	Location	Agtron Color	Sugar ends (finished)	Color Variation (finished)	% Units limp/bendovers	% units hollow internal (pics FGH)	% Units Fluffy Internal (pics CDE)	% Units firm/wet internal	% Good External (roll test)	Fry Length (1 = too short, 2= slightly short, 3=target, 4=slightly long, 5=too long)	Overall Appearance (Color, dullness, oily, defects)
1	70	W8946-1RUS	ID	70	0	6	8.0%	0.0%	82.0%	10.0%	86.0	4	5 wet units
2	38	A02424-83LB	ID	77	0	0	6.0%	10.0%	80.0%	4.0%	74.0	4	2 wet units, slight dull appearance
3	24	AF4296-3	ME	72	0	8	4.0%	10.0%	76.0%	10.0%	86.0	2	
4	83	ND060735-4	ND	73	0	2	14.0%	10.0%	70.0%	6.0%	84.0	3	
5	TG	Burbank	ID	73	1	3	14.0%	4.0%	72.0%	10.0%	82.0	3	
5	27	AF-4342-3	ID	77	0	2	14.0%	6.0%	68.0%	12.0%	84.0	3	6 wet units
7	33	A0073-2	ID	75	0	0	20.0%	2.0%	68.0%	10.0%	82.0	4	slight grey cast
8	40	A03921-2	ID	73	0	3	16.0%	6.0%	76.0%	2.0%	68.0	5	
9	3	AO02183-2	WI	66	0	10	14.0%	8.0%	68.0%	10.0%	88.0	4	lot of partial CV
10	55	AC99375- 1RU	WA	68	0	4	18.0%	6.0%	68.0%	8.0%	76.0	3	dull grey spotty, grey tips, unacceptable

Source: NFPT

Failure rate of samples for select processing criteria

Conducting Fair Comparisons

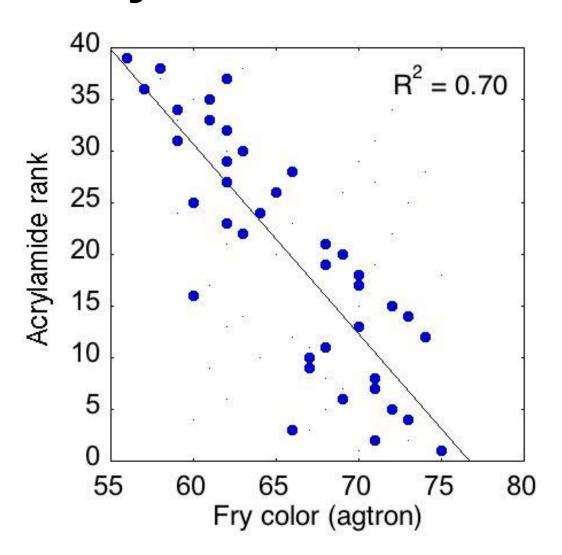
- Are current evaluations identifying limitations in the genotypes relative to recent history
- Comparisons with standards in the plot
 - Is this a fair comparison?
- Comparing the reality of the plots with the ideal
- Compare the reality with the potential

December 2012 Caldwell meeting

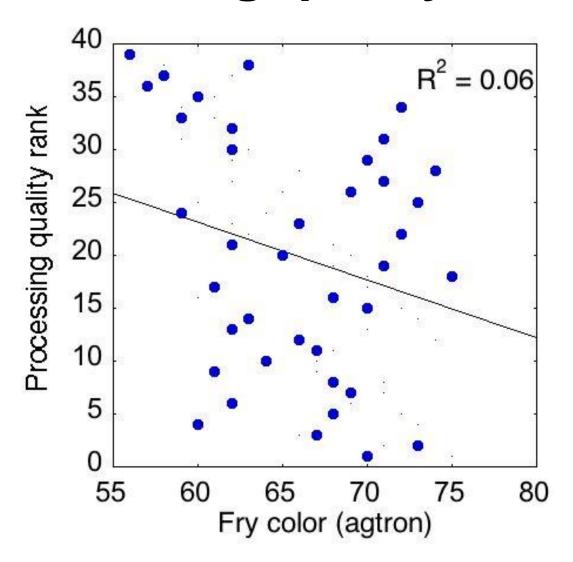
- Identified need to begin moving select lines to pivot-scale trials
- Identified need for additional data on promising clones
- Refined list of attributes
- Identified late season storage as a high value trait for new varieties
- Identified need for database of results

Progress since Caldwell

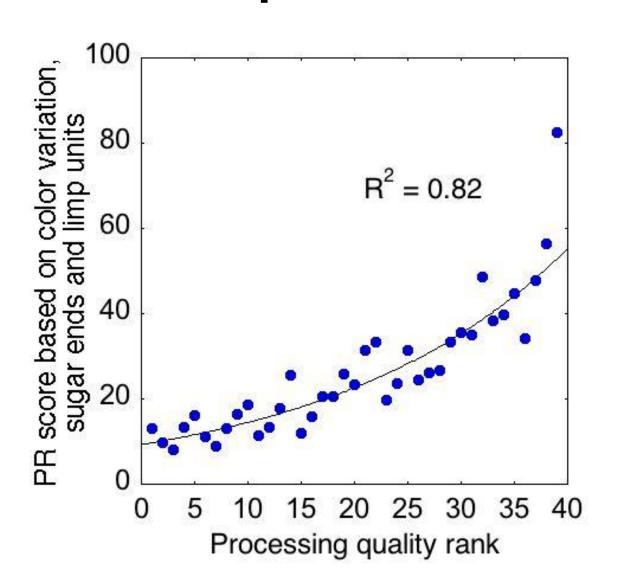
- Began moving select lines to pivot-scale trials
- SCRI trials initiated to generate additional data on promising clones
- Conducted late-season QSR tests
- Developed a database of results
 - http://acrylamide.vegetables.wisc.edu/

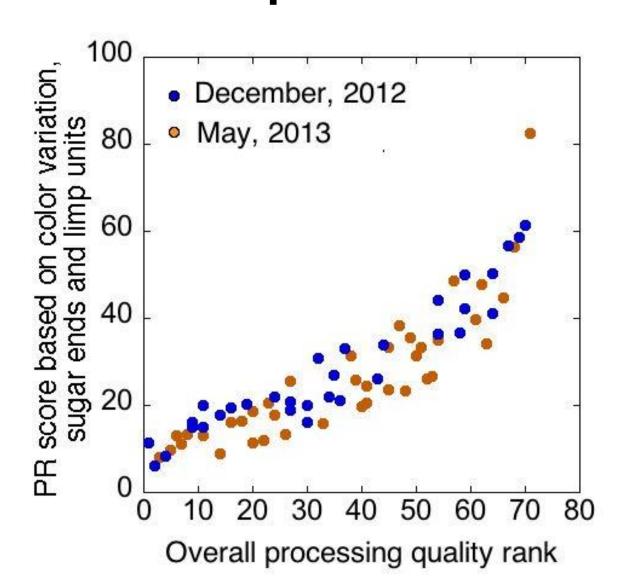

Consumer Attribute Testing

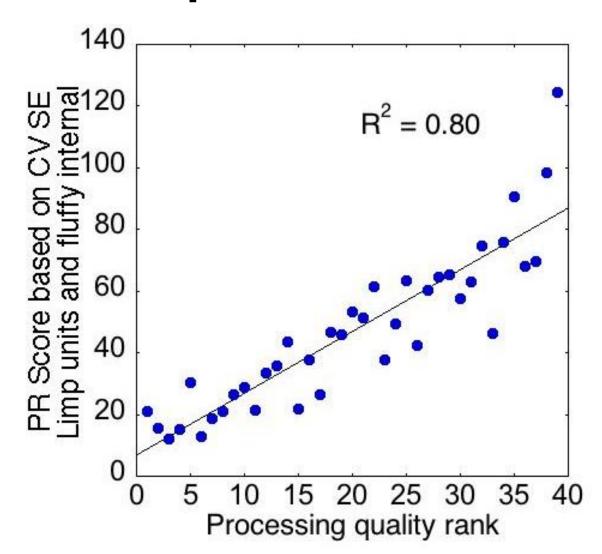
- Conducted 2 series of testing following 2011 and 2012 production seasons
- Engineering attributes
 - Color
 - Internal texture
 - Limp units
- Sensory attributes
- Potential to improve selection of clones for consumer attributes
- Increase potential to select clones with sensory attributes

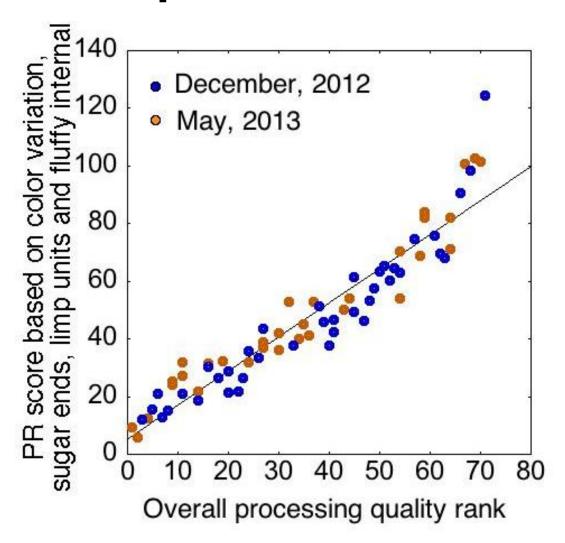

Developing an estimate for fry processing quality

- Useful for assessing trial clones
- Minimal training requirements
- Uses available facilities
- Incorporate processor and enduser criteria sooner in the decision making process


Fry color is a good predictor of acrylamide rank...


...but not a good predictor of processing quality rank


A QA estimate based on three easily scored parameters


A QA estimate based on three easily scored parameters

A QA estimate based on four parameters

A QA estimate based on four parameters

Top ten priority traits

Attribute	Total votes	QSR	Processor	Grower
% Sugar ends	14	2	4	8
Bruise free	9	0	4	5
Acrylamide	9	1	5	3
Resist Cold- sweetening	9	1	0	8
Specific gravity	8	2	5	1
Yield	8	1	4	3
Consistent solids	8	2	5	1
Size profile	7	1	4	2
% high sugar	6	2	2	2
Stores to summer	5	1	3	1

Sugar-end defect screening

- A method to assess sugar ends in material fried at East Grand Forks is being developed
- Lightness of fried slabs from replicated SCRI Agronomic trials will he quantified at bud and stem end

Moving Forward

- Wide-scale consumer attribute testing
- Limp units, sugar end, and fluffy internal characteristics
- 2013 summary
 - Every variety x site is par fried at USDA-EGF
 - Pull sample ~5 lbs
 - Finish fry within breeding/agronomic programs
 - Train each program on evaluation techniques
 - EGF, Caldwell, ME
- Focus on varieties meeting physical attributes prior to sensory evaluations

How likely is it that one variety will meet industry requirements across locations?

- NFPT data from 2011 and 2012
- 3 locations in 2011; 5 locations in 2012
- Traits determined by genetics: specific gravity, glucose, acrylamide (gluc & acryl highly correlated)
- Traits determined by agronomic practice: % >6 oz weight, % >10 oz weight (highly correlated)
- Separate tests for the two categories: acryl and %
 >10 oz were removed

Method to Conduct Maximum Likelihood test

- Criteria used:
 - Agronomic traits
 - % >6oz weight: 0.68-0.74 (for calculating P and ranking)
 - % >10oz weight: 0.28-0.40
 - Genetic traits
 - Specific gravity: 1.080-1.095
 - Glucose: 0-0.5 mg/g FW
 - Acrylamide: 0-250 ppb

(for calculating Joint P and ranking)

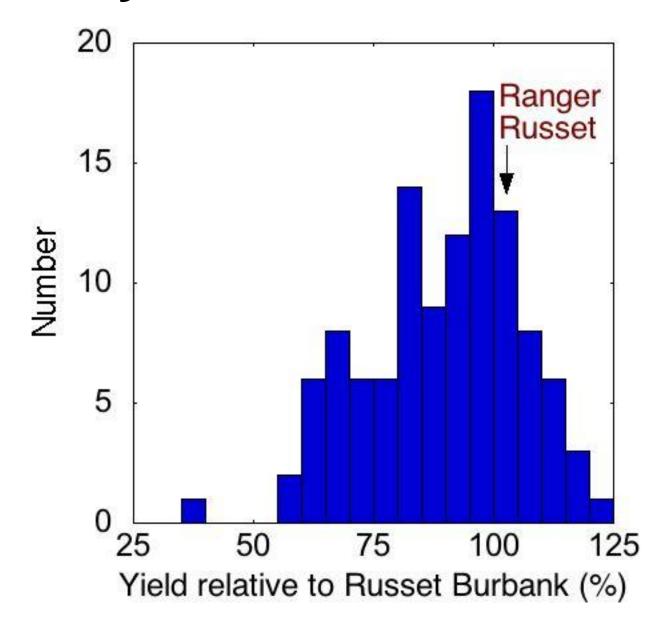
Clana	% > 6 oz									
Clone	ID	ND	WA	Mean	Stdev	P				
AND97279-5Russ	0.5988	0.2750	0.5080	0.4606	0.1670	0.0473				
AND99362-1Russ	0.7323	0.5560	0.6888	0.6591	0.0918	0.2207				
AOND95292-3Russ	0.7817	0.5249	0.6607	0.6558	0.1284	0.1692				

Success Probability of Agronomic Traits

20	11	Line #	P of > 6 oz	2012	Line #	P of > 6 oz
	1	Ranger	0.549	1	AF4113-2	0.248
	2	Dakota Trailblazer	0.413	2	A02507-2LB	0.240
	3	CO99053-3RU	0.320	3	Teton Russet (A0008-1TE)	0.237
	4	AF4260-2	0.319	4	AO02183-2	0.207
	5	AF4113-2	0.266	5	W8152-1rus	0.189
	6	A02424-83LB	0.265	6	AO00057-2	0.177
	7	A02507-2LB	0.257	7	Sage Russet	0.172
	8	A0073-2	0.223	8	Premier Russet	0.170
	9	AND99362-1Russ	0.221	9	AF3362-1	0.167
	10	AF4198-2	0.219	10	AF4040-2	0.162
	11	Sage Russet	0.213	11	GemStar Russet	0.155
	12	A01010-1	0.190	12	AF4198-2	0.148
	13	AF4281-3	0.183	13	W6360-1rus	0.147
	14	Alpine Russset	0.175	14	ND081476B-11Russ	0.143
	15	AC99375-1RU	0.175	15	AF4320-7	0.140
	16	AF3317-15	0.173	16	AF4281-3	0.140
	17	AOND95292-3Russ	0.169	17	W9162-1rus	0.137
	18	MN18747	0.168	18	Dakota Trailblazer	0.134
	19	W7449-1rus	0.166	19	A02062-1TE	0.130
	20	Clearwater Russet	0.159	20	AF4222-5	0.126

Success Probability of Genetic Traits 2011

Mi	id-se	eason	Line#	Joint P	Lat	te-se	eason Line #	Joint P
	1	ND060	735-4Russ	0.990		1	A02507-2LB	0.999
	2	A0250	7-2LB	0.958		2	W9604-1rus	0.992
	3	AF4320	0-17	0.918		3	MN02467	0.765
	4	A0073	-2	0.893		4	AC96052-1RU	0.654
	5	W8152	2-1rus	0.829		5	AF4281-3	0.642
	6	ND806	8-5Russ	0.796		6	W6234-4rus	0.637
	7	W9604	1-1rus	0.749		7	ND049517B-1Russ	0.606
	8	AC993	75-1RU	0.725		8	W8152-1rus	0.557
	9	A0213	8-2	0.680		9	ND060735-4Russ	0.544
	10	ND822	.9-3	0.652		10	AOND95292-3Russ	0.541
	11	ND060	742C-1Russ	0.613		11	AC99375-1RU	0.524
	12	ND049	517B-1Russ	0.604		12	ND8229-3	0.463
	13	AF428	1-3	0.584		13	W6360-1rus	0.448
	14	W7449	9-1rus	0.582		14	CO97087-2RU	0.419
	15	A0392	1-2	0.578	_	15	Premier Russet	0.402
	16	AF300	1-6	0.563		16	A0073-2	0.365
	17	W6234	1-4rus	0.543		17	AF3001-6	0.353
	18	MN024	467	0.535		18	A03921-2	0.312
	19	MonDa	ak Gold	0.471		19	A0012-5	0.301
	20	AC960	52-1RU	0.446		20	AF3008-3	0.300

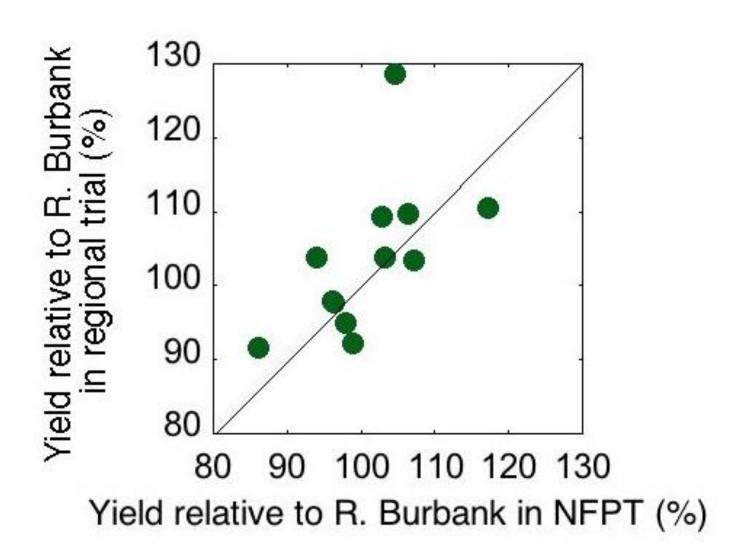

Success Probability of Genetic Traits 2012

Mid-	season Line #	Joint P	La	te-seas	Son Line #	Joint P
1	AO02183-2	0.756		1	A02507-2LB	0.568
2	W7449-1rus	0.552		2	Premier Russet	0.490
3	W10676-1rus	0.543		3	A03921-2	0.447
4	ND049517B-1 Rus	0.484		4	AF3001-6	0.443
5	A0073-2	0.457		5	Clearwater Russet	0.425
6	W6234-4rus	0.449		6	ND049517B-1 Rus	0.421
7	ND071387C-2Russ	0.442		7	W6234-4rus	0.375
8	W8946-1rus	0.424		8	W8152-1rus	0.324
9	W9604-1rus	0.415		9	GemStar Russet	0.314
10	GemStar Russet	0.413		10	A0073-2	0.292
11	AC99375-1RU	0.397		11	ND060735-4Rus	0.288
12	ND049423b-1Russ	0.346		12	A0012-5	0.275
13	ND060735-4Rus	0.338		13	W7449-1rus	0.270
14	ND8229-3	0.335		14	AF4342-3	0.212
15	AC96052-1RU	0.326		15	W6360-1rus	0.202
16	AF3001-6	0.312		16	W9162-3rus	0.193
17	Premier Russet	0.307		17	AO02183-2	0.145
18	W9162-3rus	0.295		18	AC96052-1RU	0.141
19	ND8068-5Rus	0.294		19	AF4296-3	0.127
20	A03921-2	0.288		20	Alpine Russset	0.125

Refining yield estimations to more efficiently screen clones

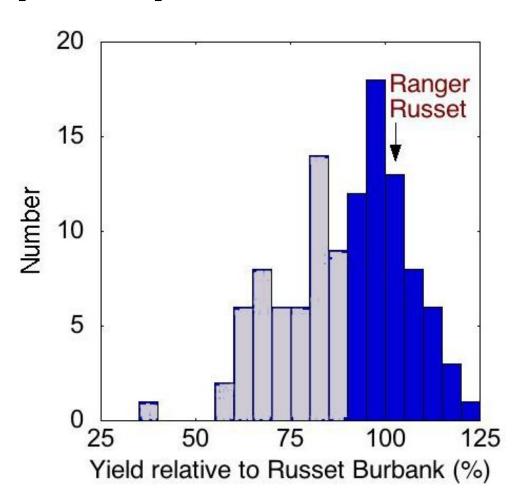
- Data from replicated plots in SCRI Agronomic trials
- Do NFPT data provide useful estimates of yield?

Total yield of clones in NFPT


Highest yielding clones in NFPT

Breeder ID In umber	Average Pield		
AC99375-1RU	119	ND049423b-1Russ	106
AO02183-22	119	AC00395-2RU	105
A9305-10	116	A03921-2	105
ND060742C-1Russ	115	A82360-7	104
ND049289-1Russ	112	AR98-9	104
AF4347-1	112	ND071078B-1Russ	103
AF3001-6	112	A01010-1	103
AF4342-3	111	A7411-2图	102
AO96141-3	110	A02424-83LB	102
A01325-1	110	AND99362-1Russ	101
Agila	109	AF4124-7	101
CO97087-2RU	109	A9045-7	100
AO82611-72	108	MN15620	99
A01025-4	108	W9604-1rus	99
W1836-3rus	107	AOA95154-1	99
AF4296-3	107	Russet⊞urbank	99

Highest yielding clones in NFPT


	Breeder 1 D In umber	Average Yield				
	AC99375-1RU	119		ND049423b-1Russ	1	.06
	AO02183-2?	119		AC00395-2RU	1	.05
*	A9305-10	116		A03921-2	1	.05
	ND060742C-1Russ	115	*	A82360-7	1	.04
	ND049289-1Russ	112		AR98-9	1	.04
	AF4347-1	112		ND071078B-1Russ	1	.03
	AF3001-6	112		A01010-1	1	.03
	AF4342-3	111	*	A7411-2?	1	.02
	AO96141-3	110		A02424-83LB	1	.02
	A01325-1	110		AND99362-1Russ	1	.01
	Agila	109		AF4124-7	1	.01
	CO97087-2RU	109	*	A9045-7	1	.00
*	AO82611-72	108	*	MN15620		99
	A01025-4	108		W9604-1rus		99
*	W1836-3rus	107	*	AOA95154-1		99
	AF4296-3	107		Russet®urbank		99

Relative yield of varieties in NFPT compared with other regional trials

Low yields increase costs and decrease profit potential

Should we invest resources in clones that yield less than 90% of Russet Burbank?

Moving Forward

- Year 1: WA, ID, and ND
- Year 2 and 3: WA, ID, ND (NFPT) and WI and ME (SCRI)
 - One more year of funding
 - Further project screening
- Value in multi-state testing
 - Are the right sites in the trial

Seed Production for Commercial Scale Testing

- Budgeted through SCRI
- Produce disease free tissue culture plantlets
 - 10 to 15 clones per year
- Produce NFT mini-tubers
 - Produce 200-500 NFTs for each clone
 - Make available for production and storage trials
- Commercial scale testing
- Is it possible for disease free tubers for all trials?
- Mechanisms for selection of clones need to be established

Disease Free Tissue Culture Plantlets

- Clean up 10 to 15 clones per year
- Produce 200 to 500 NFT minitubers
 - Greenhouse costs
- Grow first generation plants
 - Make first field generation seed available
- Need mechanism to identify clones of interest
 - Selection committee

Moving select lines to pivot-scale trials in SCRI

- Identified clones for NFT minituber production
- Targeting 2014 as first seed field year
- Large trials begin in 2015

Minituber production is underway for five clones

- Sklarczyk Seed Farms: AF4296-3, ND8229-3
- CSU: AC96052-1RU (13,087)
- CSS: A02507-2LB (3,600), A02138-2 (15,000+)
- Seed is available for W6234

Commercialization Trials

- Agronomic Trials
 - Do we have seed?
 - What 3-4 clones
 - Good consumer attributes
 - High agronomic potential
- Commercial Scale Trials
 - W6234-4 rus
 - -2,000 5,000 cwt to place in storage
 - -~40 acres for commercial run

Procedures for initiating seed production need to be streamlined

- Resources are needed for contractual seed production
- Variety protection
- Many institutions have a stake
- Delays have cost us a year for some clones

Future NFPT and SCRI trials

- Where can we make improvements?
- Where can we reduce expenditures or decrease effort?
- Where is greater effort needed?
- Can we maximize value from existing data by including regional trials in assessments

Generate expanded data set using replicated trials

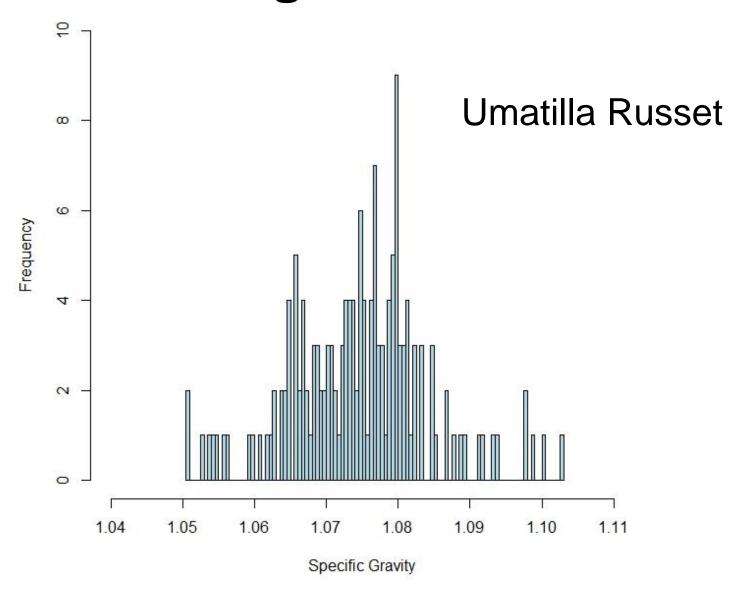
SCRI Agronomic trials are out of the ground

- 6 sites (ID, WA, OR, MN, WI, ME)
- 14 clones plus Russet Burbank check
- Replicated plots
- Provide material for multiple QSR sample time periods

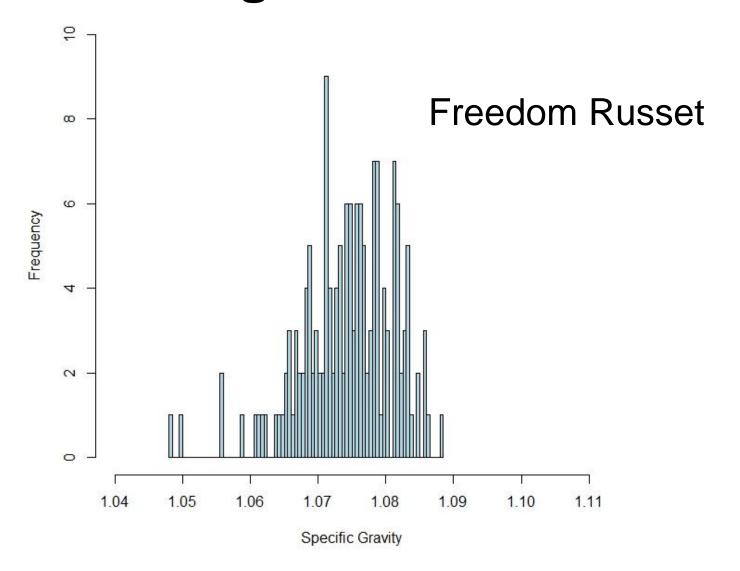
Agronomic Trials

- Improved yield and raw product quality estimates – increased predictive power
- Quality traits
 - Specific gravity variability
 - Sugar end
 - Consumer attributes
- Long term storability
- Several cwt in storage for each clone

In-season and harvest data collection


In-season

- 50% emergence date, tuber set date, 100% canopy closure date, pre-harvest stem count
- Vine maturity


Harvest

- Specific gravity of (6-10 oz tubers)
- Tuber size/yield distribution
- Individual tuber specific gravity
- Internal defects of (10-13 oz) tubers
- Length to width ratio of (8-10 oz) tubers
- Fry color and sugar-end defect screening
- Bud- and stem-end sucrose and glucose
- 20lb / clone for consumer attribute test

Assessing consistency of solids in SCRI Agronomic trials

Assessing consistency of solids in SCRI Agronomic trials

Post-harvest storage data

- Tubers are stored @ 55°F for three weeks and ramped to 48°F
- Storage samples will be collected every 16 weeks: 16 wk (Feb), 32 wk (May) post harvest
- Data of fry color, sugar-end defect, bud- and stem-end sucrose and glucose will be collected

Long term storage is a priority. Are we addressing this properly?

- Few options for storage with sprout inhibitor
- Difficulty planning next season based on May-August data
- Restricted choices. Few clones have low sugars in late storage
- How do we breed for long-term storage?
 Parents, methods, priorities.

Data analysis – using the data we already have for discussion and planning

- What have we learned so far?
- What don't we know?
- What can we do better?

Budget

	2012	2013	2014	2015
total supplies	197969	249649	289310	258478
commercial eval		33600	33600	33600
bins	10000	10000	10000	10000
Microbios	12000	12000	12000	12000
YSI supplies	12000	12000	12000	12000
land use	2000	2000	2000	2000
seed	84,000	115000	151000	111000
acryl/asp	77,969	65,049	68,710	77,878